IMPERIAL

Unbalanced Optimal Transport: Exploring its use for Spatial Forecast Verification

Natural Environment Research Council

Jacob Francis

Supervisors; Professor Colin Cotter (Imperial College London), Dr Marion Mittermaier (MET Office UK)

Optimal Transport: Intuition

Optimal Transport: Intuition

Optimal Transport (Wasserstein Distance)

Given measures $\alpha \in \mathcal{P}(\mathcal{X}), \beta \in \mathcal{P}(\mathcal{Y})$, the optimal plan is given by $\pi \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ such that;

Primal:
$$\pi^* \in argmin_{\pi \in \mathcal{U}(\alpha,\beta)} \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) d\pi(x,y)$$
 (1)

Dual:
$$f^*, g^* \in argmax \int_{\mathcal{X}} f(x) d\alpha(x) + \int_{\mathcal{Y}} g(y)\beta(y),$$
 (2)

for $f(x) \in \mathcal{C}(X), g(y) \in \mathcal{C}(Y) : f(x) + g(y) \leq c(x, y)$ and where \mathcal{U} is the space of joint probability measures with marginals α, β .

$$c(x,y) = \frac{1}{2} [(x_1 - y_1)^2 + (x_2 - y_2)^2]$$

Plans

Figure 2.5: Schematic viewed of input measures (α, β) and couplings $\mathcal{U}(\alpha, \beta)$ encountered in the three main scenarios for Kantorovich OT. Chapter 5 is dedicated to the semidiscrete setup.

[Peyré and Cuturi, 2019]

Optimal Transport: Intuition

Entropic Plans

Figure 4.2: Impact of ε on the couplings between two 1-D densities, illustrating Proposition 4.1. Top row: between two 1-D densities. Bottom row: between two 2-D discrete empirical densities with the same number n = m of points (only entries of the optimal $(\mathbf{P}_{i,j})_{i,j}$ above a small threshold are displayed as segments between x_i and y_j).

[Peyré and Cuturi, 2019]

Optimal Transport: Unbalanced

Fig. 3: Display of the impact of the reach parameter ρ on the marginals (π_1, π_2) given the same inputs (α, β) from Figure 2. First line corresponds to ρ KL and the second to ρ TV.

[Séjourné et al, 2019]

Kullback-Leiber (KL)
$$\rho \log(\frac{d\gamma}{d\lambda}) - 1, \gamma + \rho 1, \lambda$$
Total Variation (TV) $\rho |\frac{d\gamma}{d\lambda} - 1|, \lambda$

ICP Geometric Cases

FIG. 6. As in Fig. 4, but for circular comparisons.

[Gilleland et al, 2020]

Summary of OT scores

These are then accompanied by reverse version of each.

Cost	Description
Primal KL cost	Entropic regularised unbalanced bias cost with Kullback-Leiber unbalanced regularisation
Primal TV cost	Entropic regularised unbalanced bias cost with Total variation unbalanced regularisation
Sinkhorn Divergence KL cost	Debiased primal KL cost. Including extra terms to post optimisation remove noise
Sinkhorn Divergence TV cost	Debiased primal TV cost. Including extra terms to post optimisation remove noise

Relative boundary

Key: tv = total variation cost kl = Kullback-Leiber cost (se) = Sinkhorn Divergence cost (p) = primal cost r_ = reverse cost

Relative boundary (rotation)

Key: tv = total variation cost kl = Kullback-Leiber cost (se) = Sinkhorn Divergence cost (p) = primal cost r_ = reverse cost

Key: tv = total variation cost kl = Kullback-Leiber cost (se) = Sinkhorn Divergence cost (p) = primal cost r__ = reverse cost

Translation

rtv (se)=0	rtv (se)=0.005		rtv (se)=0.02	rtv (se)=0.08
rtv (p)=0.0	0405	rtv (p)=0.00905	rtv (p)=0.024	rtv (p)=0.084
tv (se)=0	tv (se)=0.005		tv (se)=0.02	tv (se)=0.08
tv (p)=0.00	0405	tv (p)=0.00905	tv (p)=0.024	tv (p)=0.084
rkl (se)=0	rkl (se)=0.00496		rkl (se)=0.0198	rkl (se)=0.0779
rkl (p)=0.0	0404	rkl (p)=0.009	rkl (p)=0.0238	rkl (p)=0.0819
kl (se)=0	kl (se)=0.00496		kl (se)=0.0198	kl (se)=0.0779
kl (p)=0.00	9404	kl (p)=0.009	kl (p)=0.0238	kl (p)=0.0819

Simple case

Translation

Reverse Costs (non-symmetric?)

Key: tv = total variation cost kl = Kullback-Leiber cost (se) = Sinkhorn Divergence cost (p) = primal cost r__ = reverse cost

Transport Plan: rho=1

C6 Observation, C7 Forecast : eps = 0.004999999888241291, rho = 1.0

Transport Plan: rho=0.001

C6 Observation, C8 Forecast : eps = 0.004999999888241291, rho = 0.009999999776482582

Transport Plan: rotation

E1 Observation, E2 Forecast : eps = 0.00499999888241291, rho = 1.0

An OT Metric and Toolbox

Questions to ask of the metric:

- Does the method inform performance at different scales?
- Does the method provide information on location error?
- Does the method provide information on intensity errors and distributions?
- Does the method provide information on structural error?
- Can the method give traditional information, hits, misses, false alarms etc. ?

OT offers many possibilities, including;

- Geometric interpretation, with 7 potential terms to consider (3 dual, 4 primal)
- Provides approximate transport plan, showing where most transport is required.
- Parsimonious, only two parameters to tune. (Epsilon, Rho)
- Can work on two different meshed data
- Works on true intensity maps, rather than binary maps.

Future Work

- Create informative diagrams/plots
- Real data application
- Study the physical interpretation of rho
- Optimise the algorithm for large data sets and ensemble models
- Work with stakeholders for better understanding of use cases, and information they want.

Thank you

Feedback, thoughts and comments welcomed – jjf817@ic.ac.uk

References:

Peyré, G, and Cuturi, M. "Computational optimal transport: With applications to data science." *Foundations and Trends in Machine Learning* 11.5-6 (2019): 355-607.

Séjourné, T., Feydy, J., Vialard, F. X., Trouvé, A., & Peyré, G. "Sinkhorn divergences for unbalanced optimal transport." *arXiv preprint arXiv:1910.12958* (2019).

Gilleland, E., Skok, G., Brown, B.G., Casati, B., Dorninger, M., Mittermaier, M.P., Roberts, N., Wilson, L.J., A Novel Set of Geometric Verification Test Fields with Application to Distance Measures. Monthly Weather Review 148, (2020) 1653–1673.

Geometric Example

C1 Observation, C6 Forecast : eps = 0.004999999888241291, rho = 1.0

Entropic Regularisation

Following work by Cuturi (2013) we add an entropic regularisation term corresponds to a Kullback Leibler penalty.

$$\pi^* \in \operatorname{argmin}_{\pi} (\dot{\pi}) + \varepsilon KL(\pi | \alpha \otimes \beta) + \mathcal{D}_{\iota}(\pi_0 | \alpha) + \mathcal{D}_{\iota}(\pi_1 | \beta),$$
(1)

$$f^*, g^* \in argmax_{f,g} - \mathcal{D}^*_{\iota}(-f|\alpha) + -\mathcal{D}^*_{\iota}(-g|\beta) - \underbrace{\mathfrak{C}^{\frac{f+g-c}{\varepsilon}}_{\varepsilon} - 1, \alpha \otimes \beta}_{\varepsilon}$$
(2)

with divergence, $\mathcal{D}_{\iota}(\mu|\nu)$ is zero if $\mu = \nu$ and blows up otherwise and where \mathcal{D}_{ι}^{*} denotes convex conjugates. For this balanced setting we have that, $\mathcal{D}_{\iota}^{*}(\gamma|\lambda) = \gamma, \lambda$. We recover the explicit plan via;

$$\pi(x,y) = \alpha(x)\beta(y)e^{\frac{f(x)+g(y)-c(x,y)}{\varepsilon}}$$

Optimal Transport: Unbalanced

	Divergence	Transform
Balanced	${\cal D}_\iota(\gamma \lambda)$	ψ,λ
Kullback-Leiber (KL)	$ ho \log(rac{d\gamma}{d\lambda}) - 1, \gamma + ho 1, \lambda$	$ ho e^{rac{\psi}{ ho}}-1,\lambda$
Total Variation (TV)	$ ho rac{d\gamma}{d\lambda}-1 ,\lambda$	$\max(-\rho,\psi),\lambda,\psi\leq\rho$
L^2 -norm (L2)	$rac{ ho}{2} rac{d\gamma}{d\lambda}^2, \lambda$	$rac{1}{2 ho}\psi^2,\lambda$

Table 1: Table displaying the different cases of divergences we utilise, along with their convex conjugate transform terms. Note here that the input measure, γ , represents the primal measure with reference measure, λ , ψ is a dual function and ρ some constant parameter.

$$\pi^* \in argmin_{\pi}c, \pi + \varepsilon KL(\pi|\alpha \otimes \beta) + \mathcal{D}_1(\pi_0|\alpha) + \mathcal{D}_2(\pi_1|\beta), \tag{1}$$

$$f^*, g^* \in argmax_{f,g} - \mathcal{D}_1^*(-f|\alpha) + -\mathcal{D}_2^*(-g|\beta) - \varepsilon e^{\frac{f+g-c}{\varepsilon}} - 1, \alpha \otimes \beta, \qquad (2)$$